
Thus~ in choosing surfactants that can make a surface hydrophiiic (in contrast to sur- 
factants that simply increase the wettability of the rock by oil), special attention should 
be paid to the magnitude of the diffusion coefficient of the active s~bstanceo 
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DOUBLE EXPLOSION IN A PERFECT GAS 

E. I. Andriankin and N. N. Myagkov UDC 539.1 

Strong-explosion problems have now been examined in some detail. An analytic solution 
has been obtained [i], the self-modeling equations have been examined [1-3] and approximate 
and numerical methods have been developed [3-10]. It is of interest to apply a similar process 
to a double explosion which can be formulated as follows in the simplest case. At time t = 
--to there is an instantaneous release of energy E~ on a plane, on a line, or at a point 
(symmetry parameter ~ respectively i, 2, and 3). At time t = 0, there is a second explosion 

o of energy E 2 at the center of symmetry of the first explosion. We assume that the adiabatic 
parameters y behind the two explosion-wave fronts are identical, while the density po of the 
unperturbed gas is constant. The first wave is considered as strong. It is obvious that a 
self-modeling solution [i] applies to the flow between the awo fronts before they fuse (t 
tc) and at a large time after fusion (t ~ tc). The non-self-modeling flow behind the second 
shock wave can be described by numerical methods [4-6, 8-10]. Here we neglect the effects of 
dissipation, ionization, and radiation emission on the strong explosion. In spite of the 
simplicity of the formation, the problem is important to explosion theory, since there are two 

O O new control parameters % = E2/E: and to by comparison with the classical solution. 

After the second explosion and before the fusion (t ~ tc) , the flow in the region between 
the fronts is characterized by E~, Po, Y, ~, r, t and therefore is dependent on the single 
dimensionless variable n = r[E~t2/Po]-I/(~+2). To describe the flow behind the second front, 
it is necessary to have the parameters E~ and to, because here the flow ceases to be self- 
modeling and is dependent on the two independent variables n and r = t/to, as well as on the 
parameters %o, ~, y. Therefore, the calculation must be performed for each particular %o 
while to is considered as the time scale, by analogy with an explosion with counterpressureo 
We consider finite to < ~. In that case, the second wave always catches up with the first, 
since the latter is always strong and any C+ characteristic catches up with the front in a 
finite time. The occurrence of a double configuration of waves that do not fuse in practice 
is related to the counter pressure in the unperturbed gas, which results in a negative phase 
behind the first wave. 

The subscripts i, and 2, denote the quantities at the fronts of the first and second 
shock waves respectively. Subscript * denotes quantities at the front of the wave formed by 
fusion in the double explosion (resultant wave). 

i. Self-Modeling Stages~ During the initial instants (t <<to) after the second point 
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explosion, the shock wave shows self-modeling propagation, since a point explosion is always 
strong in the initial stage, and therefore the flow is determined by the energy E~ and the 
power law density distribution at the center of the first explosion at t = 0 (we neglect the 
pressure and the velocity ahead of the second shock wave front in this approximation), i.e., 
for times t <<to the first wave is considered as immobile (the successive approximations in 
which this assumption is correct are considered below). We take the first term in the ex- 
pansion from the asyptotic representation of the density at the center of the first wave [i]: 

p = t l r  z, o = v / ( ? - - t ) ,  E~ :=a  l(v,7)  E1, 

A b (% ?)Pl. (r~)-c~ r~ rl.  (t = 0) , . . 2 /  \~,(~,+2~ . . . . .  [~iZo ' Po] , 

where b and a~ are self-modeling constants and r~ is the position of the front of the first 
wave at the time of the second explosion (distance scale). 

The flow behind the front of the second wave for t <<to is dependent on the self-modeling 
variable ~ = r/(r~x), where the quantity x = r=,/r~, is given in this limiting case by the 
formula 

1 

X = r2~ [. (,--~)AT2 ] ~+2+~, 
rl. (?+  l) b (v, ~) 

where % = k(v, 7)~~ �9 = t/to. 

The energy balance was used to calculate the values of the self-modeling constant k(~, y) 
for y = 1.4 and ~ = 3 and i, the results being respectively 7.42 and 3.84. A solution has 
been obtained [i, 3] for a strong explosion in a medium or variable density. The late stage 
corresponding to t>>tc is also self-modeling and is described the the solution with energy 
E ~ = E~ + E~ everywhere apart from the central region, where the entropy distribution is de- 
pendent on the passage of the two shock waves and the interaction between them. For t ~ t c 
the effects of to become negligible and for T +~ we have 

P./Pl* = (1 § ~o)~/(v+~), r./r~.= (1 + ~o)1,~+~). (i. i) 

The criterion for a self-modeling state after fusion may be taken as a numerical differ- 
ence, e.g., 5%, of the pressure at the front of the double explosion p*(T) relative to the am- 
plitude po(T) of the strong explosion of energy E ~ and then the time t o at which this con- 
dition is met is defined by 

[p,  (~o) __ pO (To)l/pO (~o) ~ 0,05. (1 .2)  

Calculations show that the self-modeling stage is reached earlier (i.e., as a smaller 
To) if T c is small, and the resultant wave according to (1.2) will be close to the self- 
modeling state rather earlier, since the sequences of additional shock waves (see below) 
formed after the interaction of the waves will catch up with the resultant wave and will 
violate (1.2). However, with the 5% criterion above, this violation will occur only for the 
first secondary wave, which is the strongest, and then only for ~o ~ i, and in order to in- 
corporate the subsequent secondary waves it would be necessary to strengthen (1.2) consider- 
ably. The first entry to the self-modeling state occurs in a time comparable with Te for a 
gSven %. For example, %o = 5 t ~ = 3.4~ c, in the planar case for ~o = 5, and t ~ = 2.7T c for 
%0 = i. The additional shock wave are negligible small for %~ >>i or %~ <<i, and therefore 
the resultant wave goes over to the self-modeling state once, the time required being t ~ ~ Tc. 
The second entry to the self-modelling state for %o ~ 1 occurs for the t ~ considerably ex- 
ceeding the T c corresponding to this ~o, but here again T ~ increases monotonically with ~c" 

2. First and Second Approximations for the Second Explosion for T <<i. In considering 
the self-modeling behavior of the second explosion for T <<i we assumed that the first wave 
was immobile (r1* = r~). 

We consider the first approximations following the self-modeling one in relation not 
only to the density but also the the pressure and velocity ahead of the second wave front. 
The approximation is performed in terms of the time variable x = r=,/r~,, basically following 
the method surveyed in [3]. The medium ahead of the second front corresponds to the central 
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integral in I:he first shock wave: 

9 = b ( % y )  P~*(r/r~*)% p = h ~ ( v , ? ) p ~ ,  v = r  xvx,;  ( 2 . 1 )  

The equations of gas dynamics for the second wave are taken in divergent form and trans- 

formed to the variables 

g = Plg~*, h = plp~,, ~p = (r~,v)/(O~.,r), 

= rV/r~.~, x = rvjr~, .  ( 2 , 2 )  

We represent the approximate solution around the point x = 0 as an asymptotic series in 

XU: 

G = ~ G ( ~ ) x  ~ ,  ~ = 0 , 1 , 2  . . . . .  ( 2 . 3 )  

where G is a column vector with components g, h, e, ~, where 

The f o l l o w i n g  i s  t h e  a p p r o x i m a t i o n  f o r  t h e  f r o n t  s p e e d  [2 ] :  

-- in D 2 = In (Aox ~)+v) + Alo xv + Aio x:v § . . . ,  

D = D~./D~., A o = [(v + 2 + co) ~ b (% "~) (? + i)]/[(v -~- 2) "~ ). (? --  1)1, 

where A~o and Aio are unknown constants to be determined. The following are the boundary 

conditions at the front (~ = i) of the second wave: 

n~, = t ,  2/(? + i ) ,  = 0 ,  h ~ = O ,  i =  i ,  2, 
[~__ t'~2 hlA o (2.4) 

,~ .  (~) = - 4~,H (.~. -~. ~.)/(~, ~ - -  t),  H = ~ , F ~ J  ~ '  

where hl is the counterpressure ahead of the second wave of (2.1). At the center ~ = 0 we 

have 

q) (0, x) = 1/~ + x~q~ (~) (0) + x2~q~,'~) (0) + . . . .  

where the ~o (i) are constants. We substitute the expansion of (2.3) into the initial system 
of equations as transformed to the variables of (2.2) and arrange the terms x vi with identical 
i = 0, i, 2 to get systems of ordinary differential equations for the corresponding approxi- 

mations. 

The value i = 0 corresponds to a self-modeling solution for a strong explosion in the 
medium of variable density. The second wave remains self-modeling with high accuracy for x 
not very small, the exact value being determined by X. For example, in the spherical case we 
have x = 0.ii for ~o = i, and for ~o = l0 we have 0.25, and the pressure at the front of 
the second wave exceeds the pressure ahead of the front by approximately a factor i00~ 

We consider the first approximation (i = i)o We assume that ~ > v --2 in order to neglect 
terms of higher order in (2ol) in the expression for the density expansion in the central 
interval of the first wave. 

The following in the system of equations for the first approximation: 

g(1) ( ~ - ~ - t ) - -  (?--4"~t)iHg(~ [~ (g(o)r -~- g(1)(p(o))]' = 0, 

- -  (A10 + H )  e (o) - -  ~e(1) ' § [~(p(o) (e(1) + (y _ t)  h(1)) + ~=q~l) (e(O) + 
I ( ? -  l)h(~ ' = O, 

- -  (Alo + H)  h(o) - -  ~h(~) ' + ? (q~(O)h(1) + q)(1%(o)) § ( 2 . 5 )  

+ ~ (q~(O)h(~)' + q)(~h(O)') + ~ (h(O)q)~l)' + h(~)qSo)') = 0, 

\ - - 7  
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(primes denote derivatives with respect to the variable ~). 

System (2.5) contains the constants A~o. We split the dependent variables G(i) = G(tO+ 
A10G(12) into two systems of equations for G(It) and G(IS) and combine these with the self-modeling 
equations for Gt 0) and the boundary conditions of (2.4) to get a closed system of equations 
for numerical solution for the first approximation. This system has an integral analogous 
to that given in [3] (p. 122). The parameter H ~ i/~ appears linearly in (2.5) and in the 
corresponding boundary conditions of (2.4), i.e., division of all the equations by H results 
in a system independent of ~. This important property enables one to derive the numerical 
solution for some one ~o for example k o = i. The solutions for other k ~ were obtained by 
simple division by ~o (for given ~ and y). 

Consequently, in the first approximation we can write for the dependent variables that 

G : G(~ + (x~'/s 

where Q(~) = G(t)% is not dependent on ~. In this approximation, k appears in G only in the 
combination T = xV/k (time scale). Figur~ 1 gives a numerical solution in the first approxi- 
mation for the planar case, y = 1.4, v = i; curve 1 denotes the density g(a), 2 the pres- 

sure h (I), and 3 the velocity ~'(i). 

In the second approximation, the density in the central interval of the first wave is 
taken in the form of (2.1), and it is therefore necessary to put y < 1 + ~/(2~ -- 2); in the 
equations for this approximation, the boundary conditions for the front introduce the counter- 
pressure h, and terms proportional to x~ (6 = (m + v + 2)/2), which incorporate the motion of 
the medium ahead of the second front and the motion of the first front. For y < 1 + ~/(3v -- 
2) we always have 6 > 2v, and the first wave can be considered as immobile, as in the first 
approximation. In that case the second approximation may be considered by analogy with the 
first, and the distortion due to the motion of the first wave appears only in the third 
approximation. 

For I small, the scale xV/l characterizes the presence of a singularity of boundary- 
layer type at the center, at which there axe sharp changes in the quantities at the second 
front~ This singularity occurs in a double explosion (in contrast to the self-modeling so- 
lution for the single explosion) due to the presence of the characteristic scale r~ (or to). 
The following estimates may be made from the first approximation: x~<<~ is the region where 
the second explosion is strong, and %<<x ~ ~i is the region where the second shock wave de- 
generates into a quasiacoustic one (for ~ <<i). 

The first approximation was used here to supply the initial data for the numerical so- 

lution. 

3. Numerical Results. The limiting cases �9 <<i and r >>i correspond to self-modeling 
solutions. The problem has been solved numerically for a wide range of times for intermediate 

values of T. 

The solution was obtained by Godunov's method with explicit and inexplicit schemes, which 

are described in [6]. 

The second front was identified during the computation, as well as the resultant front 
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after fusion. The error in the calculation was checked from the conservation of mass and 

energy over the entire flow field. The errors were not more than 2-4%. For T < Tc, the flow 
ahead of the second front was calculated at each step from the self-modeling equations for 

the strong es~losion. For T ~Tc, the initial approximation for the pressure in the algorithm 
for the decay of the discontinuity at the resultant front was specified as the pressure at the 

front of the self-modeling wave corresponding to the overall energy of the two waves. The 
numerical solutions were derived for %o = 1 and 5 for y = 1.4 in the planar case (v = i). 

Figures 2-5 give the numerical results. 

Dimensional considerations indicate that the time is related to the position of some one 

of the fronts x = r,/r1* by T = T(y, v, %, x), which is sho~n in Fig. 2. The straight line 
x = 1 corresponds to the path of the first shock wave. Curve ! in Fig. 2 is for %o = 0 (C+ 
characteristic), while 2 is for %o = 1 and 3 for %o = 5. All the fusion times fall in the 

range from 0 to T+ (T+ is the time for the first wave to reach the C+ characteristic). For 
= 1 and y = 1.4 the calculations gave the following values: T+ = 6.41, Tc(% ~ = I) = 1.406, 

Tc(% ~ = 5) = 0.515. The self-modeling state is attained for T + ~ in Fig. 2 and is expressed 
as curves 2 and 3 tending asymptotically to the broken straight line, the equations for these 
being derived from (I.I) by substituting io = 1 and 5. 

When the two waves fuse, an unstable configuration is formed at x = i, which breaks up 
at the next instant into the resultant shock wave and an expansion wave traveling towards the 
syn~metry plane. Figure 3 shows the evolution of the discontinuity for a certain time after 
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the fusion for >o = 5, with the symbols corresponding to the following instants: i) T = 
0.515, 2) r -~ 0.571, 3) [ -~ 0.631, 4) T = 0.69. After the decomposition, the pressure at 
the first C_ characteristic of the decompression wave exceeds the pressure at the front of 
the resultant shock wave for a time AT (0.066 for %o = 1 and 0.077 for ~o = 5). The ordinate 
in Fig. 3 is the pressure h = P/p14'~, while the abscissa is the variable ~ = r/r~,. 

In this coordinate system, the resultant wave tends to an immobile (self-modeling)profile 
for T § ~ with the pressure at the front from (i.i). 

Figure 4 shows the pressure envelope for the resultant front from the time of fusion 
(point A with coordinates x = i, h, = 7.365) for ~o = 5. The calculation for this case was 
carried through to x = 1.78, which corresponds to T = 25.7. The limiting point B to which 
the pressure at the front tends for T § ~ has the coordinates of (i.i). Figure 4 shows the 
discontinuous character of the numerical solution in the self-modeling state. Here we show 
the fusion of the first and strongest of the additional shock waves with the front of the 
resultant wave, these additional waves arising from reflection of the decompression wave from 
the high-entropy zone near the center [Ii]. The first of these additional shocks corresponds 
to reflectio i of the st~'ongest decompression wave from the high-entropy zone, this being 
formed at x = 1 (Fig. 3). The additional shock waves become diffuse during the calculation, 
so the step in Fig. 4 has been constructed by means of a special procedure analogous to that 
used in [12]. 

It is of interest to compare the reflection from an undeformable wall for the waves in 
the double explosion and the self-modeling wave with the same total energy. Figure 5 shows 
the dependence of the pressure P/Po (Po = po(r~~ 2 is the pressure scale) at the wall as a 
function of time T' from the start of reflection for %o = i, with the wall placed in the 
plane x = i of front fusion for the double explosion. At the instant of collision with the 
wall (T' = 0), the pressure from the double explosion considerably exceeds that from a self- 
modeling shock wave. Then curve i (reflection of the double explosion) and 2 (reflection of 
the self-modeling shock wave) fall rapidly and attain identical pressures in time r'= = t,/ 

to = 0.39. During this time, the dimensionless pressure impulse f/f0~= jp/p0dT' in the re- 
0 

flected shock wave from the double explosion exceeds the impulse from the self-modeling wave 
by AI/Io -~ 0.13, which constitutes about 14% of I/Io for the double explosion. 

Here the characteristic scale of the process is to. Consideration of the dimensions 
shows that AI increases with to as 41 ~ t~ ~3 for given y and ~. The increase in AI from to 
is bounded, of course, by the applicability of the strong-explosion approximation for each 
particular case. 

In the same way the above method can be used to consider a double explosion in a medium 
with an initial variable density distribution, and one can also consider the counter pressure 
and the effects of thermal conductivity. Allowance for ionization and dissociation alters 
the equation of state for the perturbed medium, although this can be described approximately 
by introducing, for example, an effective adiabatic parameter. The radiative transport pro- 
duces a zone of finite density and temperature near the center of a double explosion [13, 14], 
and in the late stages results in detachment of the burned sphere from the shock wave [15]. 
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INVESTIGATION OF THE SHOCK COMPRESSION OF LIQUID TIN AT PRESSURES 

UP TO I00 GPa AND INITIAL TEMPERATURES OF 310...475~ 

K. V. Volkov and V. A. Sibilev b~OC 536.242:54603 

The melting of materials when subjected to shock compression and the equation of state of 
the liquid phase has been considered in [1-4]. Numerous experimental results on the dynamic 
compressibility of different materials up to 1 TPa, e.g., [5-7], show that melting in a shock 
wave is only slightly affected by the variation of the shock adiabatic curve in p-U and p--V 
coordinates (p is the pressure, U is the mass velocity, and V is the specific volume). The 
experimental data up to pressures of 0.1-0.15 TPa are well described by a linear D-U re- 
lationship. At higher pressures there is a reduction in the slope of the D-U curve, due to 
melting in the shock wave [3], and the D--U curve in the liquid-phase region takes the form of 
a straight line but with a smaller slope than for the solid phase. However, it should be 
noted that from the existing experimental points one could equally successfully draw a D--U 
curve with a gradually reducing slope. Such attempts have been made (see, e.g., [8]). On 
the other hand, it was pointed out in [3] that a gradual reduction in the slope of the D-~J 
curve may be due to an increase in the contribution of the electron component in the equation 
of state at high temperatures. Hence, it is difficult to draw any definite conclusions re- 
garding the effect of melting on the form of the D--U curve. Information on this can, in 
principle, be obtained if one has experimental D-q7 curves of the initially solid and initially 
liquid phases. We know of only one publication in which shock compression of a liquid metal 
(mercury) has been investigated [9]. As far as we are aware no comparative data on the shock 
loading of an initially liquid and an initially solid phase of metals exists. 

io Calculation of the Shock Adiabatic Curves of A1 and Cu and an Estimate of the Shock 
Adiabatic Curves of Liquid Sn. Using the Semi-empirical equations of state proposed in [3] 
we calculated the shock adiabatic curves of the initially solid and liquid phases of A1 and 
Cu. The initial state of the liquid phases was taken at t = 2000=C for Ai (Pol = 2ol g/cm 3, 
and Eol= 217"i0s erg/g) and at t = 2500~ for Cu (Pol = 7.1 g/cm 3 and Eol= 142"108 erg/g). 
Considerable overheating above the melting point was then taken in order to explain the 
difference in the behavior of the shock adiabatic curves of the solid and liquid phases and 
particularly the slope of the D--U curves. We also carried out calculations using the equation 
of state of the liquid phase for the initially solid state of A1 and Cu (Table !). 

In Fig. 1 (in the same coordinates as in [3]) we plot curves for A1 (curve 1 is experi- 
mental [i0], curve 2 is calculated for the solid phase, curve 3 is calculated for the liquid 
phase with Poi~ Eol, curve 4 is calculated for the liquid phase with Pos, Sos, and curve 5 is 
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